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We investigate the percolation properties of configurations of spherical particles deposited by a gen-
eralized ballistic deposition model. In this model, a tuning parameter a is introduced for controlling the
relative efficiency of two mechanisms: direct deposition and deposition by following the path of steepest
descent on previously deposited particles. Any particle that is trapped in an elevated position after rol-
ling is rejected. Exact critical exponents are obtained for the (1+1)-dimensional version of the model.
We performed computer simulations of the (2+ 1)-dimensional version and by studying the percolative
behavior both for fixed values of a, as a function of the surface coverage 9, and along the saturation
curve 6(a, ), we construct the percolation phase diagram of the model. Below a threshold value,
a.=3.05, there is no percolation transition, but we give some evidence for a “virtual percolation line.”
The critical exponents f3,7,v are determined by finite-size scaling and Monte Carlo renormalization
group techniques, and are shown to be consistent with those of ordinary two-dimensional lattice percola-
tion. Finally, changes of structure with a are illustrated through the pair distribution function and the
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pair connectedness function.

PACS number(s): 81.15.Lm

I. INTRODUCTION

Complex structures involving clustering may be
formed by the adsorption of colloidal particles as well as
the growth of bacterial colonies [1-3]. These processes
have many applications including chromatographic sepa-
ration of proteins, formation of thin organic films, pro-
tein production from micro-organisms, and characteriza-
tion of microbial colony growth. Despite this, modeling
and theoretical studies of the kinetics and the structure of
these processes have received less attention than the ex-
perimental studies. Many experimental observations
[4-7] suggest that two factors are of great importance,
namely the geometric exclusion effects and the irreversi-
ble nature of the deposition processes. Accordingly, the
adsorption of colloidal particles has been often analyzed
with the help of the random sequential adsorption (RSA)
model [3-8], in which hard particles are deposited ran-
domly, one after another, with the condition that parti-
cles overlapping the preadsorbed particles are rejected.
However, RSA does not consider various interactions
that adsorbing particles experience during the transport
process from bulk to the surface. These interactions in-
clude dispersion, electrostatic, hydrodynamic forces, and
gravity, in addition to short range repulsion. Despite its
simplicity, RSA seems to be well suited to describe cases
where the density difference between solvent and solute is
small, as in protein adsorption [7]. In the opposite limit,
in which the adsorbing particles are much denser than
the solvent, their motion is strongly affected by gravity
[9] and can be described, in solution, by straight line tra-
jectories and, near the adsorbing surface, by the path of
steepest descent on the previously deposited particles. In
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order to handle this case, a ballistic deposition (BD) mod-
el in which multilayer formation is not allowed has been
introduced [10,11]. The saturation density of BD is
larger than that of RSA and the saturation state is
reached faster in the BD model (an exponential, instead
of algebraic, time behavior) [10-13]. On the other hand,
in the Eden model [14], which was developed to simulate
the growth of cell colonies, the process begins from a sin-
gle seed and empty surface sites are filled randomly with
a probability proportional to the number of occupied
nearest neighbors. A growth model similar to the Eden
model, the off-lattice ballistic aggregation model, was also
developed by Vold [15] to simulate colloidal aggregation:
The growth process is started with a single stationary
particle and other particles follow random ballistic trajec-
tories in the vicinity of the stationary particle; if a mov-
ing particle contacts the stationary particle, it sticks at
that position and a stationary cluster is formed.

The above three models (RSA, BD, and the Eden-type
off-lattice ballistic aggregation model) can be combined in
a generalized ballistic deposition (GBD) model [16,17],
which is defined as follows. Randomly positioned spheres
are dropped, one after one, from above the adsorbing
plane. A sphere follows vertical trajectory until it reaches
either the adsorbing plane or a preadsorbed sphere. In
the first case, the trial sphere is retained with a probabili-
ty (1—p) or removed with a probability p. In the second
case, the trial sphere follows the path of steepest descent
on the previously adsorbed particles. If the particle is
trapped in an elevated position, it is removed (no multi-
layer formation); otherwise, it is accepted with a proba-
bility p or is rejected with a probability (1—p). The time
evolution of the surface coverage 0 is governed by the fol-
lowing rate equation,

1353 ©1995 The American Physical Society



1354

d0/dt =dPP(6)+a dRM(9) , (1)

where ®PP(9) is the available surface function for direct
deposition (seeding process), ®*M(9) is that for the depo-
sition through rolling motion (growing process) and a is
defined as

—_ P
a 1—p) " (2)
Hence, a is a tuning parameter that controls the
efficiency of the restructuring of the adsorbed monolayer
due to the motion of the adsorbing particles over the pre-
viously deposited particles. When a =0, the model is
equivalent to RSA, since all particles can be only ad-
sorbed by direct deposition. When a =1, the GBD mod-
el reduces to the simple BD model. For a — «, it corre-
sponds to an off-lattice ballistic aggregation model. Thus,
the tuning parameter plays an important role in deter-
mining both the structure of clusters formed by deposited
particles and the kinetics of the process. Viot, Tarjus, and
Talbot [16] obtained the analytical solution of the (1+ 1)-
dimensional GBD model and Tarjus et al. [17] studied
both the initial regime and the asymptotic kinetics of the
(24 1)-dimensional GBD model. It was observed in the
latter study that low coverage expansions of the kinetics,
which are very efficient to RSA [8], describe a range of
coverage, which shrinks as a becomes larger. Similarly,
the asymptotic regime, which represents in practice a siz-
able fraction of the saturation coverage for RSA, de-
scribes a rapidly decreasing part of the process as a in-
creases. Thus, theoretical methods borrowed from
liquid-state physics and geometrical analysis of the
configurations on the surface are not sufficient when
cooperative effects become more important and longer
ranged. The emergence of such effects in the GBD model
are related to the existence of a percolation transition.
Percolation theory has played an important role in a
variety of physical problems like the sol-gel transition
and transport phenomena (such as conduction or
diffusion) within fractal structures [1,18—-21]. While per-
colation in various lattice systems has been extensively in-
vestigated [18-22], continuum percolation has received
comparatively less attention [23-26]. Nevertheless, it
has been reported that the static exponents (3, ¥, and v)
for continuum percolation are the same as those for lat-
tice percolation [23,27], whereas the dynamic exponents
are not universal [28,29]. The theoretical studies of con-
tinuum percolation have concentrated on equilibrium
models such as the penetrable-concentric shell model
(PCS model) [24], which are useful for generating equilib-
rium particle aggregates [26] and for explaining the sol-
gel transition in dense dispersions [30]. However, in
many processes, such as formation of colonies of mi-
crobes and colloid adsorption on solid surface, the PCS
model cannot generate the proper structures since it does
not consider the irreversible nature of the processes.
While the percolation transition is controlled by the den-
sity p and the core parameter A in the PCS model, it is
controlled by the surface coverage 6 and the tuning pa-
rameter a in the GBD model.
The present work is concerned with continuum per-
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colation of spherical particles deposited irreversibly by
the generalized ballistic deposition model. Unlike other
continuum systems studied so far, the entire process is ir-
reversible and the system is modeled by hard spheres
without an attractive potential well. An objective of this
study is to understand the characteristics of this model
through percolation theory. Thus, we investigate the crit-
ical properties and apply various techniques, such as
Monte Carlo renormalization group methods and finite-
size scaling, to obtain the critical exponents and to check
whether irreversibility and exclusion effects change the
universality class. We also construct the percolation
phase diagram of this system as a function of both sur-
face coverage 0 and tuning parameter a. Finally, we dis-
cuss different structural aspects of the configurations of
deposited spheres along the saturation line.

II. SIMULATION

Configurations of deposited spheres were generated by
simulations in a square cell of side L with the usual
periodic boundary conditions. The relative size of a
sphere of diameter o to the simulation cell is specified by
the parameter r,=(w02)/(4L?) and the coverage is
defined as 8=(Nmo?)/(4L?) where N denotes the num-
ber of deposited particles. The simulation algorithm
proceeds as follows. First, a trial position within the cell
is generated using a uniform random number generator.
If there is no overlap between the projection of an incom-
ing particle on the plane and the deposited particles, a
uniform random number & is generated on the interval
[0,1]. If £<(1—p), the incoming particle is accepted.
Otherwise, it is rejected. If there is any overlap in the tri-
al position, the trial sphere may be deflected once, twice,
three, or four times before reaching the surface, or it may
be trapped in a stable elevated position and be rejected
[13]. If the sphere reaches the surface after rolling on
preadsorbed spheres, it is fixed at the position with prob-
ability p. Details of the algorithm are given elsewhere
[11-13].

To determine whether any spanning cluster of directly
connected spheres exists, we used the modified “graph”
technique. This technique requires less computer
memory than the usual graph technique. Numbers from
1 to n in order are assigned to successively adsorbed par-
ticles. If the ith particle is deposited through rolling and
is connected with particle j, the graph matrix G, whose
elements all have initially been set to zero, is sequentially
filled with numbers that indicate the connected particles
as follows:

GL,k)=j,
G(,k")=i,

1<k=<6, (3)
i<k'<6, (4)

where k and k' are the first available memory locations.
Since a particle can be connected with at most six parti-
cles in a two-dimensional (2D) system, only six memory
sites for each particle are needed. For example, if a center
particle i contacts three particles, the first three G (i,k)
contain the index numbers of these particles, while the
remaining memory sites are still set to zero. However,
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since the central simulation cell is surrounded by periodic
replicas, one could search a wrong connection path
through the boundaries. Thus, we use ‘“‘free boundary
conditions” [26] in determining the graph matrix, i.e., if
two particles are connected through a boundary, G (i, k)
is not updated and still set to zero. Therefore, G (i,k) in-
dicates all particles connected with a particle i within the
central cell. Following this procedure, the graph
matrix is eventually filled with index numbers.
In the meantime, all pairs of particles that are con-
nected through periodic boundaries are monitored,
(nb,nt), ..., (n},n}), ..., (nl,nl), where n? and n} are
the index number of particles at the bottom and the top
of the central cell, respectively, and n j’ and n j’ are the in-
dex number of particles at the left hand side and the right
hand side of the central cell, respectively. Each one of
the particles n? or n j’ becomes a starting point for a
searching process. By using G (i,k) as a pointer, we can
visit all particles within a cluster containing one of those
starting particles. We associate an index v (i) to each
visited particle. If a particle is visited after starting at
particle nib, its index value, initially set to zero, becomes
1. After all particles within the cluster are visited and the
corresponding index values are set to 1, if v(n/)71, the
cluster is not spanning through the system. Otherwise, it
is a spanning cluster.

Throughout the simulation we monitored the order pa-
rameter P, which is defined as the probability that any
particle chosen at random belongs to the infinite cluster,
the susceptibility x, and the mean cluster size S (the two
latter quantities are defined for finite clusters). In contin-
uum percolation, the variable that naturally replaces the
fraction of occupied sites p of lattice percolation is the
surface coverage, 6, i.e., the fraction of the total surface
that is covered by the deposited particles. Near the per-
colation threshold 6., the order parameter, the suscepti-
bility, and the mean cluster size follow power laws

P.(0)~(0—6,)F, for 6=6, (5
and
x(0)~S(0)~|6—06.77, (6)

above and below the critical point. Note that the suscep-
tibility Y and the mean cluster size differ only above the
percolation threshold, 6> 8,.. Another important proper-
ty characterizing the critical behavior is the correlation
length &, which is defined as the mean distance between
two sites on the same (finite) cluster and has the following
power law behavior:

£(0)~|6—06,]" . @)

However, instead of computing directly the correlation
length &, we monitored the number of realizations of a
system with size L, R (L,60,a), which has any spanning
cluster at a coverage 0 for a given value of a. This quanti-
ty enables one to estimate the critical exponent v of the
correlation length through Monte Carlo renormalization
group theory and finite-size scaling techniques [23,25].
Moreover, the above three exponents for percolation are
related by the following expression:
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dv=2p+vy , (8)

where d is the dimension of system. Since determining
these exponents requires good accuracy, we carried out
six sets of calculations corresponding to six system sizes
(r,=0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.005), with
300-1000 independent runs for each system size.

In the GBD model, percolation depends not only on
the surface coverage 0, but also on the parameter a. For
a =0 (RSA) there is no percolation transition, nor for
a =1 (simple BD). A percolation transition appears only
if clustering is strong enough, that is if a is large enough.
Otherwise, the system saturates (jamming limit) with only
finite-size clusters. An interesting point in the percolation
phase diagram is, thus, the critical value of @ at which the
system can first percolate. For this value a,, percolation
occurs exactly at saturation, 6, =6(a,, « ), and if one fol-
lows the process at constant parameter @ =a,, there is no
percolating phase for 6> 6,.. An alternative route to in-
vestigate the critical point at a, is to follow the behavior
of the system along the saturation line. The two relevant
variables, 6 and a, are then related in a nontrivial manner
and before studying the (2+ 1)-dimensional version of the
model, we first discuss the (1+ 1)-dimensional version for
which the analytical solution is known [16].

III. (1+1)-DIMENSIONAL GBD MODEL

An important issue in this study is the choice of the
most appropriate variable along the saturation line. To
obtain some insight on this, we consider the (1+1)-
dimensional model for which exact analytical expressions
are available for the kinetics and cluster size distributions
[16]. Even though the one-dimensional layer of deposited
particles does not possess percolation properties above
the percolation threshold, it does allow us to study the
percolation behavior along the saturation line.

In the generalized ballistic deposition model (for a > 0),
the rolling mechanism leads to the formation of clusters
composed of directly connected particles, contrary to the
RSA case (a =0). If we define p,(a,?) as the density of
clusters of size s, the total number density of clusters is

ngla,t)= 3 p.(a,t) 9)
s=1
and the particle is

o

pla,t)= 3 sp(a,t) (10)

s=1

and, choosing o as the unit of length, their exact analyti-
cal form can be obtained as [16]

p(a,t)=fo'dt'%z)(1+2at')e2°““""e—") (11)
and
ngla,t)= fotd"g;%“)e““""f"’ : (12)

where H (t)=exp[ —2y +2Ei(—1¢)], y=0.57721. . . is the
Euler constant, and Ei(—t)=ft°°dx exp(—x)/x is the
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exponential integral.

The particle density at saturation p(a, ) increases
gradually from the RSA value [pgga(o0)=0.747]
through the simple BD [ppp(c )=0.808] to that of
ballistic aggregation model [p( )|, -, =1.0] as the tun-
ing parameter a is increased. On the other hand, the to-
tal number density of clusters at saturation ng(a, « ) de-
creases monotonically with increasing a [16].

For large values of @ and ¢t— + «, Egs. (11) and (12)
admit the following asymptotic expansions:

pla,0)=1—Y'7/a +0(1/a), (13)

ngla,)=1Vr/a +0(1/a) . (14)
The mean number of particles per cluster,

M(a,t)=fﬁ%’tt)—) (15)

behaves then asymptotically as
M(a,)~a'’?, whena— o . (16)

The preceding equation is similar to the behavior shown
in a related lattice model, the 1D monomer filling with
nearest-neighbor cooperativity. In the regime of strong
clustering, a=k, /ky>>1, where k; is the rate for filling
sites with already i filled neighbors and a plays the role of
the tuning parameter a, the average cluster size increases
in that model like a!/? at fixed coverage [31].
Combining Eqgs. (13) and (16) leads to

M(a,oo)~[1—p(a,oo)]_1 , as pla,o)—1. (17)

In addition to the above quantities, one can introduce
the susceptibility

x(a,t)= 3 s%p,(a,1), (18)

s=1

which is the second moment of the cluster density, and
the mean cluster size S (a,t), distinct from M (a,t), which
is traditionally defined by

® 2
—18°p,(a,t)
S(a,t)= Esw 12 Ps = X((Z’;)) .
zsslsps(a’t) pra
Using the exact formula given in [16] for the density of
clusters p,(a,t), one obtains the asymptotic expression

(19)

172

a , as d— ©

S(a, ) (20)

- [1—pla, )] !, aspla,0)—>1.

Similarly, one obtains that the nth moment of the clus-
ter density at saturation p(a,t) behaves asymptotically as
a" 1’2 when a — + . An obvious consequence is that
the correlation length & goes as @'/? when a — + o, or
else using Eq. (13),

§~[1—p(a,c>o)]“1 , as p(a,0)—1. (21)

Choosing the density at saturation p(a, « ) as the proper
variable to study the percolation behavior, we thus derive
from Egs. (17), (20), and (21) that the static exponents
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take their usual value for 1D percolation: v=y=1. If,
however, we choose a, or rather the probability p defined
in Eq. (2) as the relevant variable. We obtain

S(p)~E&p)~(1—p) 172,

which would lead to y =v= %, in contradiction with ordi-
nary percolation. The probability p is by no means a con-
tinuum equivalent of the occupation probability on a lat-
tice. The apparent paradox of Eq. (22) is simply due to
the nonanalytical dependence on p (or a) of the saturation
density when p—1 (or a— + x). As will be shown
below, such a problem does not appears in (2+1)-
dimensions since the percolation threshold occurs at a
finite value of a for which a nonanalytic dependence on p
or a of the saturation coverage is not expected.

asp—1, (22)

IV. (2+1)-DIMENSIONAL GBD MODEL
A. System characteristics

The coalescence of two clusters is impossible in the
(1+1)-dimensional GBD model because geometric con-
straints allow rolling over only one particle before ad-
sorption. The (2+ 1)-dimensional GBD contains three ad-
ditional mechanisms which correspond to two, three, and
four deflections of an adsorbing particle. These three
mechanisms may result in the connections between clus-
ters, which can lead to a percolated structure of deposit-
ed particles. The connecting process is the continuum
counterpart of sequential adsorption processes of mono-
mers on two-dimensional lattices with additional
cooperativities favoring deposition of monomers near two
or more occupied sites [3]. There is no simple relation,
however, between the rates of filling sites with i neighbors
and the parameter a because in the GBD model the
effective deposition rates are also determined, in a non-
trivial way, by the geometry of the local configurations of
adsorbed spheres.

The qualitative characteristics of the 2D GBD system
are illustrated in several snapshots (Fig. 1) of saturation
configurations generated with different values of a. In
Fig. 1(a) (@ =1), the cluster composed of black spheres is
the largest; that made of grey spheres is the second larg-
est. The largest cluster represents a significant fraction of
the system, but it is nonpercolating and the second larg-
est cluster is also quite significant. These clusters consist
of many singly connected bonds and exhibit random frac-
tal interfaces, which prevent particles from forming a
connected phase through the system. Even though Fig.
1(b) (a =3) shows a percolated structure, there are still
several singly connected bonds and fractal substructures
within the connected structure. The finite clusters are
present as isolated islands. In Fig. 1(c) (@ =5), the per-
colated phase is strongly connected and surrounds small
isolated clusters. The strong connectivity between parti-
cles suggests that there exists a percolation transition
during the deposition process for this value of a. Figure
1(d) shows one limit of this model, corresponding to
a = . This configuration is generated by placing initially
one particle at the center of the system and then allowing
only those particles that roll down over preadsorbed par-
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ticles to adsorb on the surface.

Figure 2 shows that the saturation coverage increases
with a from 0.547 to 0.691, which correspond to the satu-
ration coverage of RSA (represented by the lower dashed
line) and the saturation coverage at @ = « (represented
by the upper dashed line), respectively. The saturated
structure of RSA can be characterized as a distribution of
nonconnected particles, while the structure correspond-
ing to a = « is a totally connected infinite Eden-like clus-
ter. As shown in this figure, there is a one-to-one map-
ping between the saturation coverage and the tuning pa-
rameter a.

(c)
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B. Critical properties along the saturation line

In order to obtain the percolation threshold
[a.,0.(a., = )] along the saturation line, and, subsequent-
ly, to determine the universality class of the percolation
transition, we used direct analysis of the simulations as
well as Monte Carlo renormalization group and finite-size
scaling approaches. There is basically one independent
variable along the saturation line: once a is chosen, the
corresponding saturation coverage 6(a, ©) is automati-
cally fixed (on average). Initially, we monitored the order
parameter P, the susceptibility ¥, and the mean size of

(d)

FIG. 1. Saturated configurations of spherical particles generated by the (2+ 1)-dimensional GBD model with different values of
the tuning parameter: (a) a =1, (b) a =3, and (c) a =5. The black, gray, and white particles belong to the largest, the second largest,
and small isolated clusters, respectively. (d) Configuration of a growing colony generated by (2+ 1)-dimensional GBD when a = .
The number of deposited particles is 1000.
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0.60

0(a,»)

FIG. 2. Saturation coverage 6(a, «) (solid curve) as a func-
tion of @ in the 2D GBD model. The upper and lower dashed
lines represent the saturation coverages at @ = < and a =0, re-
spectively.

the finite clusters S for configurations of deposited
spheres at saturation as a function of a for the largest
studied system size, i.e., r,=0.0001. The critical
behavior of these three functions in the vicinity of the
percolation threshold is described by power law singulari-
ties. Following Gawlinski and Stanley [27], we treat
0.(a., o) as an adjustable parameter and determine its
value from the best correlation between the simulation
data and Egs. (5) and (6). In this way, we find the satura-
tion coverage at the critical point 6.(a,, «© )=0.633, and
a corresponding value of a, =3.128 (or p, =0.758).

From a linear fitting of the raw data on the double log-
arithmic plot for P, and Yy as functions of
[6(a, 0 )—06,(a,, x)] (Fig. 3), we determined the corre-
sponding critical exponents,

B=0.141+0.01, (23)

10° ]10°

> 10°

10! 1 107
107 10°® 107
10(a00)—6(a,00)|

FIG. 3. Double logarithmic plot showing the dependence of
P_(a,) and x(a,») on |0.(a., ©)—6(a,0)| along the satura-
tion line. The relative area of a particle to the simulation cell,
74, is 0.0001. The deviation of several points from the solid line
is a finite-size effect.
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2.35+0.03, 6<06, (24)
Y= 12.35+0.18, 6>6, . (25)

These values are in good agreement with the exact ex-
ponents of the usual two-dimensional lattice percolation:

=2=0.1388..., y=%£=2.388.... In accordance
with the work of Lee and Torquato [32], we obtain better
estimates of the exponents by considering the susceptibili-
ty x rather than the mean cluster size S: For the latter,
the estimated numerical value of y =2.21+0.03.

As shown in Fig. 4, the double logarithmic plot of
|6.(a., o )—6(a,x)| versus |p,—p| is well fitted by a
straight line with slope 1,

16.(a.,0)—6(a,»)|~|p.—pl, asp—p,. (26

As discussed in Sec. III, this confirms the expected re-
sult that for any finite value of a (or p < 1), the saturation
coverage is an analytic function of a (and p). We can use
then the probability p, which is a controllable parameter
in the simulations, in place of the saturation coverage
6(p, « ) in order to investigate the critical behavior.

An alternative method to estimate 6,(p,, «), p., and v
is obtained by combining the Monte Carlo renormaliza-
tion group with finite-size scaling [25]. The central quan-
tity in this approach is the so-called connectivity func-
tion, which describes how the occupation probability (in
our case the surface coverage) is transformed under a re-
scaling of all lengths. In practice, the connectivity func-
tion R (b,0) is taken as the probability that a spanning
cluster is found in a b X b cell when the surface coverage
is 8. Renormalization group analysis and finite-size scal-
ing then predict that, except for special cases and connec-
tivity rules [33], the approximate fixed point of the trans-
formation, defined by

0*(b)=R(b,6%(b)) , 27

approaches the percolation threshold as

]01 T T T

|60(av°°)_6(av°°)‘

107"F ¢ 3

107° | L | N
10°* 107 107 107 10°
lp.—pl
FIG. 4. Double logarithmic plot showing the relation be-
tween |6, (a,, ©)—6(a, )| and |p, — p| along the saturation line
in the (2+1)-dimensional GBD model. The slope of the solid
line is 1.
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0*(b)=~60,+Ab" 1, b+ , (28)

whereas the eigenvalue of the linearized transformation,

_ dR(b,0)

A=
b d9 9*([)) > (29)

allows a determination of the correlation length exponent
v through the relation,

ln(kb):%lnb +B, botoo. (30)

Since the saturation coverage 6 is not a controllable
simulation parameter, it is more convenient to use p.
R (b,p) is then the fraction of all generated GBD
configurations with fixed parameter p that are at satura-
tion in a b X b cell and possess a spanning cluster across
the cell. We determined p, and v in two ways. The first
one is to treat p as 6 and use all the above equations, Eqs
(27)-(30), to obtain p, and v. The interpretation of the
approximate fixed point p*(b) in terms of an effective
real-space renormalization group approach is far from
obvious, but we expect that, by virtue of the scaling laws
and the fact that R (b,p) tends to a Heaviside function
H(p —p.) when b— + o, Egs. (28) and (30) still hold. A
second procedure to obtain p, and v is to renormalize
b Xb cells onto a b'Xb' cell and to study the approxi-
mate critical point p;,- and the eigenvalue of the linear-
ized transformation, A, -, which are defined by

R(b’pl;':b’)=R(b'ypb=':b’) > (31)
dR (b,p) dR (b',p)

P e /——— (32)

bb dp pb‘,‘b’ dp P;:b'

These two quantities have an asymptotic behavior given
by Egs. (28) and (30), respectively, provided b is replaced
with (b/b’). Such a method was successively applied to
the continuum percolation [25].

Figure 5 shows the connectivity function R (b,p) for
various cell sizes. From the plot of In(A,)/Inb versus
1/Inb [Fig. 6(a)] and that of In(A,,.)/In(b/b’) versus
1/In(b/b’) for b'=11.28 [Fig. 6(b)], we obtain the fol-
lowing estimates of the correlation length exponent:

v=1.3710.01 (33)
and
v=1.35+0.01, (34)

respectively, which are close to the exact lattice percola-
tion value, v=%=1.333. ... From the above values of v

and Egs. (26) and (28), we also determined the percolation
threshold p, [see, Fig. 6(c) and 6(d)]. The two different
procedures give slightly different values,

p.=0.748+0.003 (35)
and
p.=0.7571+0.004 , (36)

corresponding to a,=2.975 and a, =3.122, respectively.
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FIG. 5. Dependence of the connectivity function R (b,p) on p
at saturation for various cell sizes: A, b =12.53; O, b =28.02;
O, b=39.63; X, b=51.17; +, b=62.67; and *, b =88.62.
The intersection of these curves with the line p’=p (dashed)
gives the approximate fixed point p*(b) of the transformation
R. The slope of R (b,p) at p*(b) is the eigenvalue A, from which
we calculate the exponent v.

These estimates are slightly smaller than the threshold
obtained by direct analysis of the simulations
(a,=3.128). Since the saturation coverage is an increas-
ing function of g, this indicates, as expected, that analysis
of a finite system overestimates the percolation threshold.

Finally, we also used finite-size-scaling relations at the
percolation threshold to evaluate the critical exponents.
The order parameter, which we take in a finite system as
the probability for a particle to belong to the largest clus-
ter, behaves as

P(p.,L)~L P, 37

where L is identical to b in the preceding analysis and
p.=0.758. Figure 7 shows the double logarithmic plot of
the order parameter P(p.,L) (represented by triangular
points) versus system size L for p, =0.758. The slope of
this curve gives 8/v=0.104%0.017, which shows a good
agreement with the lattice value, B/v=2=0.104..
Similarly, the mean cluster size obeys the followmg rela-
tion:

S(pc,L)

and from the double logarithmic plot in Fig. 7, we obtain
the value 7 /v=1.79910.046 to be compared to the lat-
tice value y /v=2=1.791.

From the above results, we conclude that for the
(2+ 1)-dimensional GBD model along the saturation line,
a percolation transition occurs at a, =~3.05+0.07 and be-
longs to the universality class of ordinary two-
dimensional lattice percolation.

~LYv (38)

C. Percolation phase diagram

Having determined the critical value a, at which per-
colation first occurs in the 2+ 1-dimensional GBD model,
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we can study the percolation behavior for values of
a >a,.. The system is then expected to percolate at a sur-
face coverage 0.(a), which is less than the saturation
value 6(a, ) (the transition thus takes place at a finite
time during the deposition process). We repeated part of
the preceding analysis in order to determine the surface
coverage at the percolation threshold for various values
ofa >a..

For every chosen value of a and for a given system size
(r,=0.0001), we monitored the order parameter P, the
susceptibility x, and the mean mass of the finite cluster .S,
for configurations of spheres at different stages of the
deposition process (all averages were obtained at constant
surface coverage rather than at constant time). From
double logarithmic plots of the data and Egs. (5) and (6),
we found the percolation threshold 6,.(a) for each chosen
value of a. We also obtained the estimate of the exponent
Y (y=2.29510.014 when a =5, y=2.367%0.012 when
a =10), which confirms that the percolation transition of
the GBD model is always in the universality class of ordi-
nary lattice percolation. We obtained rather poor esti-
mates of the exponent B (8=0.106£0.003 at a =10),
however. The percolation line 6.(a) is shown in Fig. 8,
together with the saturation line, 6(a, ). Both lines
meet at @ =a.~3 and 6.(a) decreases monotonically
with increasing a. A similar diagram was obtained by
Evans and Sanders [34] through the study of monomer
filling with nearest-neighbor exclusion on a square lattice
with a biased adsorption rate, k. =(1x8)k. For § less
than a critical value &,, they found a “virtual percolation
threshold” corresponding to coverages higher than the
saturation value of the physical adsorption model (§=0).
This threshold can be obtained by extrapolating the vari-
ation of the mean cluster size S and of the correlation

(d)

length £ beyond the jamming limit. We did the same for
our GBD model, i.e., we extrapolated P (8) and S(8)
beyond the saturation coverage according to Egs. (5) and
(6) for different values of a below the critical value a, (in
practice, @ =1,2,2.5). The resulting “‘virtual percolation
line” is plotted in Fig. 8. Note that for small values of a
(and a fortiori for RSA, a =0), the extrapolation pro-
cedure cannot provide any realistic value since the clus-

ters are small even at saturation (or even nonexistent for
RSA).

V. STRUCTURE

We have also investigated the structural characteristics
of the deposited configurations by computing the radial

10°F 10°

10° -
=3 =
o, < o,
= =

10°F

10! 107"

10 10°
L

FIG. 7. Double logarithmic plot showing the dependence on
L of S(p.,L) and P (p.,L). Finite-size scaling predicts that the
data should be linear with slopes ¥ /v and —B/v, respectively.
0, S(pe,L); A, P (p,,L).
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FIG. 8. Percolation phase diagram for the (2+1)-
dimensional GBD model. The upper solid line represents the
saturation coverage 6(a, ©). The diamonds represent the per-
colation thresholds obtained from the analysis described in Sec.
IV C and the dot-dashed line is a second order polynomial fit of
these percolation threshold values. The multitude of dashed
lines represent the contour plot of the mean cluster size S.

distribution function gm(r,a,G) and the pair connected-

ness function P(r,a,0) above and below the percolation
threshold. The latter is defined as the probability that
two particles at a distance r belong to the same cluster.
The mean cluster size is directly related to the pair con-
nectedness function through
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S@,0)=1+22 [ “4r P (1,0,0) . (39)
0

o
For a =0.5, Fig. 9(a) shows that the pair connected-
ness function diminishes rapidly with r even at satura-
tion. This reflects the short ranged connectedness be-
tween particles. Of course, the 8 peak at » =1 is distinc-
tive of the rolling mechanism and the peak at » =2 re-
sults from rolling of an incoming_sphere on a dimer.
There is also a small peak at »=1'3, which is produced
by a rolling process on a connected trimer. As a in-
creases, the amplitude of the three peaks as well as the
pair connectedness function gradually increase and show
long range correlations. Around the percolation thresh-
old [a =3, Fig. 9(b)], the pair connectedness function at
saturation does not decrease significantly with », which is
a signature of the percolation phenomenon. On the con-
trary, the curves at low and intermediate coverage are
gradually diminishing, thus reflecting the finiteness of the
clusters. In case of a =20 [Fig. 9(c)], the pair connected-
ness function and the radial distribution function at satu-
ration exhibit almost the same patterns and values. This
means that almost all particles belong to the infinite clus-
ter, which is similar to an Eden cluster.
We have also calculated the coordination number Z,
2(a,0=226(a,0), 40)
where G (a,60) denotes the amplitude of the singular of
g¥(r,a,0) at r =1. Figure 10 shows that Z gradually in-
creases along the saturation line to approach a limiting
value corresponding to that of 2D ballistic aggregation.
A value of Z >2 is a necessary, but not sufficient, condi-
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FIG. 10. Dependence of the coordination number Z at satu-
ration on a. The intersection of the two dotted lines represents
the percolation threshold, where Z =2.33.

tion for percolation. Table I displays the coordination
numbers calculated at the percolation transition line of
Fig. 8. While the coverage on the percolation transition
line decreases with increasing a, the coordination number
keeps increasing.

VI. CONCLUSION

We have investigated the percolation behavior of
spherical particles irreversibly deposited by a generalized
ballistic deposition model. The critical exponents have
been obtained analytically for (1+ 1)-dimensional and nu-
merically for (2+ 1)-dimensional by different techniques.
The results show that the percolation transition of this
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TABLE 1. Coordination number Z on the percolation transi-
tion line.

z

Q

2.3301
2.3694
2.4198
2.4393
2.4657
2.4789
2.4973
2.5059

O VooV P W

[

model belongs to the universality class of ordinary lattice
percolation. By investigating the system as a function of
surface coverage 6 and restructuring parameter a, we
have constructed the full percolation diagram of the
(2+1)-dimensional model. Percolation occurs at satura-
tion for a critical value of a, a, ~3.05, and for increasing
values of a >a,, the transition takes place at decreasing
surface coverage. We have also examined the structural
properties of the layer of deposited particles for various
values of @ and 6 by calculating both the pair correlation
and pair connectedness functions.
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